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Recent work on the complete wetting transition has emphasized the role played by the coupling of fluctua-
tions of the order parameter at the wall and at the depinning fluid interface. Extending this approach to the
wetting transition itself we predict decoupling of fluctuations as the temperature is lowered towards the
transition temperature Ty, . Using this we are able to reanalyze recent Monte Carlo simulation studies and
extract a value for the wetting parameter w(Ty)=0.8 at Ty /T=0.9 in very good agreement with long-

standing theoretical predictions.
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A long-standing controversy in the study of phase transi-
tions at interfaces concerns the nature of the continuous wet-
ting transition in three dimensional systems with short
ranged forces which corresponds to the marginal dimension-
ality [1-3,5—8]. Renormalization group (RG) analyses of
simple capillary wave models predict [1,2] strong nonuniver-
sality for critical exponents and amplitudes dependent on the
value of the “wetting parameter” w(7') at the transition tem-
perature T'y,. However, reliable estimates for w(7T') appropri-
ate to the Ising model are significantly larger than values
fitted to extensive Monte Carlo simulation data [6] which
only reveal small deviations from mean field (MF) theory
[7]. Recently it has been suggested [8] that the transition in
the Ising model is actually fluctuation induced (weakly) first-
order hinting that the fitted values [6,7] are unreliable. How-
ever, no quantitative analysis of the simulation data was
given and the question “what value of w(T) is consistent
with simulation studies of the Ising model?”’ remains unan-
swered. In addition, there are new doubts [9] that finite size
(FS) effects hinder comparison of the original simulation
studies with RG predictions based on a semi-infinite model.

In this paper we extend our recent analysis of fluctuation
effects at the complete wetting transition based on a “two
field” effective Hamiltonian H,[/;,l,] [10~12] to the prob-
lem of the wetting transition discussed above. We predict
crossover behavior in the effective wetting parameter as the
temperature is lowered towards Ty, which is associated with
the decoupling of fluctuations at the wall and at the fluid
interface. We show that this is in qualitative agreement with
more recent Monte Carlo simulation studies of FS effects in
thin magnetic films [13] which have already been shown to
be consistent with the two field theory deep in the complete
wetting regime [10—-12]. Using this prediction we are able to
extract a value for the wetting parameter w(7) at (or very
close to) the transition temperature 7y while avoiding the
issue of whether the transition is weakly first or second order.
We find w(Tw)=0.8 at Ty /T=0.9 which is in very good
agreement with the most recent series expansion estimate at
this temperature [3]. This is close to the universal critical
value of w [4] which has been the long-standing expectation
for the magnitude of the wetting parameter appropriate to the
Ising model [1].

To begin we make some remarks about the simulation
studies used to extract this value of w. Binder, Landau, and
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Ferrenberg (BLF) [13] consider a thin Ising film (thickness
D lattice spacings) with competing surface fields H,
= —Hp . For this geometry there are a number of theoretical
predictions for the way in which length scales associated
with wetting phenomena determine the nature of phase co-
existence and criticality in the confined system [14,15]. The
qualitative predictions are confirmed by the BLF simulation
studies. In particular, BLF observe the predicted symmetry
broken phase (in which wetting films are adsorbed at each
wall) for temperatures T<T(D) [with To(D)<Ty [14]]
and a “soft mode” phase [14] in the temperature window
Tc>T>Ty (with T¢ the bulk critical temperature) where an
up spin—down spin interface sits on average at the center of
the thin film and whose fluctuations are controlled by an
exponentially large correlation length [10-12,14,15]
5]
&|~exp 20 1)

Here « is the inverse bulk true correlation length and
6= 6(T,H,) is a nonuniversal critical amplitude, the tem-
perature dependence of which plays a crucial role in our
analysis. Thus the qualitative features of both theory and
simulation are in good agreement.

This situation should be compared with older Ising model
simulations [6] of wetting in a thin Ising film with equal
surface fields H;=Hp which as mentioned above have been
the source of the controversy surrounding critical wetting.
Recent theory [9] has pointed out that coupling between fluc-
tuations in the wetting layers on each side of the thin film is
an important effect and may explain the discrepancy between
the simulation results and the theoretical predictions for a
semi-infinite system. As emphasized above the interpretation
of the BLF simulations is more straightforward because the
results are compared directly with predictions for the FS sys-
tem and not the semi-infinite geometry.

To continue we recall some pertinent ideas in the devel-
opment of effective Hamiltonian models of wetting transi-
tions. The standard capillary wave model H[I(y)] has the
form [1,2]
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where 2 ,5(T) is the stiffness coefficient of the fluid inter-
face (separating bulk @ and B phases) which unbinds from
the wall and whose position is described by the collective
coordinate /(y). For systems with short ranged forces the
binding potential W(!) is taken to have the form [1,2]

W(l)=hl+ae '+ be 2, 3)

where & is proportional to the bulk ordering field. At mean
field level critical wetting occurs at h=a (T} )=0 provided
b>0. Similarly the complete wetting transition occurs in the
limit of vanishing bulk field A—0" for T¢>T>TYF where
a(T)>0. RG theory based on (2) and (3) predicts critical
exponents and amplitudes which are sensitive to the wetting
parameter

kBTK2

o(T)= IS "

4)

For values w<<2 the phase boundary for critical wetting re-
mains a(Ty)=0, i.e., Ty="TH" but the critical exponents are
very different from MF theory. For example, along the isobar
h=0% the transverse correlation length diverges (as
T—Ty) with an exponent vj=(y2— ) 2 for <w<2
[1,2]. The implications for complete wetting are less
dramatic—only critical amplitudes are sensitive to w while
exponents retain their MF values [2].

The discrepancy between these predictions and the older
Monte Carlo simulations [6,7] led Fisher and Jin [8,16] to
reassess previous derivations of H[/(y)] concluding that the
stiffness coefficient should be replaced with a position de-
pendent term

Sp(LT, .. .)=3,4(T)+ae *'—gle *'+...  (5)

although the binding potential W(/) is essentially correct.
The important term in (5) is the next to leading order expo-
nential decay which is negative (¢>0) at the MF phase
boundary A=a(TH")=0. When this position dependence is
taken into account in RG calculations the wetting transition
is driven first order for sufficiently small values of w<w*
where the tricritical value o™ is expected to be of order
unity. Fisher and Jin estimate that the transition appropriate
to the Ising model is very weakly first order (the correlation
length is enormous at the transition) and that Ty is very
close to THT .

The concept of a position dependent stiffness coefficient
was forwarded independently by Parry and Evans [17], who
pointed out that Hamiltonians of the form (2) could not de-
scribe next to leading order singularities of correlation func-
tions at the complete wetting transition (which are known to
exist from exact statistical mechanical sum rules). Unfortu-
nately the position dependence of 3 (/) explicitly derived by
Fisher and Jin using crossing and integral criteria is not of
the type required by Parry and Evans [17] to satisfy full
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thermodynamic consistency. One way around this is to intro-
duce a two field effective Hamiltonian H,[/;,/,] [10-12]

H2[11712]=fdY[%qu(llaIZ)vlu'Vlu

+U)+Woy(l— )], (6)

which models the coupling of fluctuations at the wall and
apf interface. The binding potential W, is essentially the
same as the expression (5) while U simply binds the lower
surface to the wall. The Hamiltonian (6) may be derived
from an underlying “microscopic” Landau-Ginzburg-Wilson
functional using a double crossing criterion in which /;(y)
and /,(y) are collective coordinates denoting surfaces of
fixed magnetization m)l( and m){, respectively. In the ap-
proach to the complete wetting transition the collective co-
ordinate /, unbinds from the wall while /; remains bound.
The position dependence of the stiffness elements
3 ,(11,15) provides a very elegant explanation of the corre-
lation function singularities which single field Hamiltonians
fail to describe. In particular, it is the off diagonal elements
which provide the dominant exponential decay essential for
thermodynamic consistency in the correlation function
theory. The term 3, is essentially position independent and
may be identified with the stiffness of the wall-S3 interface
2., While Z55(15;) is very similar to the Fisher-Jin stiffness
(5). The presence of coupled fluctuations has a rather pro-
found effect on the critical behavior at complete wetting.
Assuming that U(/,;) may be approximated by a Gaussain
U(l)=rl3/2 RG calculations [10,12] predict that critical
amplitudes are no longer determined by w but by the renor-
malized quantity

_ “p
=TT A 6y @
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where wg=kpTk*/4m3.,,53 and £,5=1r/Z1, is the (finite)
correlation length at the w3 interface. A; is the momentum
cutoff for the bound surface /;. The distinction between mo-
mentum cutoffs for the surfaces of fixed magnetization m?*
and mj was not addressed in our earlier discussion of cou-
pling effects deep in the complete wetting regime. This will
play an important role in our treatment of the crossover to
critical wetting.

Consider for example the effective Hamiltonian (2) with
cutoff A. In standard interpretation the range of wave vec-
tors allowed in the Fourier decomposition of I(y) is
0<Q<A where A<v2,5/kgT corresponding to length
scales much greater than the bulk correlation length [18].
The same idea applies to the two field Hamiltonian. In fact, it
is easy to establish [19] that the local cutoff A must satisfy
A1<VZ,,5/kgT otherwise this picture of fluctuations breaks
down. Of course this does not mean that fluctuations of the
underlying order parameter m(r) with wave vectors greater
than A; do not exist, rather that only for sufficiently small
wave vectors are they well described by an interfacial-like
collective coordinate /,(y) which couples to /;(y). Fluctua-
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tions in m(r) with wave vectors greater than A; are not
interfacial-like and have to be added to the model in some
other way [19]. Coupling between these modes and I,(y)
does not lead to renormalization of the wetting parameter.

We now apply these ideas to the wetting transition starting
in the complete wetting regime and ask how the critical am-
plitudes describing the transition vary as the temperature is
lowered towards T3 . The important features of the Hamil-
tonian in this limit are as follows.

(i) The cancellation of the leading order exponential de-
cay in W(5)(I21) and 2,5(l5;) similar to that indicated in (3)
and (5). Such behavior could have been anticipated from the
simpler capillary wave model and the Fisher-Jin theory.

(i) The vanishing of the local stiffness 2w3~a2 and
hence the momentum cutoff A ;. These effects are specific to
the two field model.

The important behavior related to (ii) corresponds to a
decoupling of fluctuations in the order parameter m(r) at the
wall and af interface. Within our theory all these features,
(i) and (ii), are associated with the flattening of the magne-
tization profile near the wall as 7— T%F. While we were
initially worried that this was an artifact of our model, in-
spection of the simulation results for the magnetization [13]
appears to confirm this very close to the observed Ty,. Ex-
actly at T=TH" the two field model is essentially identical to
that of Fisher and Jin so repeating their argument [8] we
predict that the wetting transition is fluctuation induced (very
weakly) first order provided w is not too big. However, be-
cause the tricritical value w* is not known very accurately
the transition in the Ising model may still be second order.
Even if the transition was first order it is very unlikely that
this could be seen directly in simulations [12].

A prediction of this analysis is a crossover effect associ-
ated with the decoupling of fluctuations. Deep in the com-
plete wetting regime the coupling of fluctuations described
by (6) increases the effective value of the wetting parameter
[as given in Eq. (7)] but this effect vanishes as the tempera-
ture is lowered to the wetting temperature (or more accu-
rately T%F). In other words, the effective wetting parameter
® displays the limiting behavior

lim  &(T, ...)=w(TY), ®)
TA»T%F

which is our central result. This has important consequences
for the temperature dependence of critical amplitudes. For
example, in [10] we showed that the critical amplitude 6
defined in (1) is related to the effective wetting parameter by
6=1+ ®/2. The decoupling of fluctuations thus implies that
6 should decrease as T is reduced to Ty and that the extrapo-
lated value at the wetting temperature (or more accurately
THF) is 01 (Ty) =1+ w(Tw)/2. (Recall that Ty, and TN are
extremely close together and it is unlikely that they can be
distinguished.) In Fig. 1 we plot values of the critical ampli-
tude 6 taken from the susceptibility measurements of BLF.
Using linear and cubic fits to extrapolate to the wetting tem-
perature Ty, /T¢=0.9 we obtain §* ~ 1.4 which implies that
w(T)~0.8 at this temperature. This is very close to the series
expansion result of Fisher and Wen [3]. Importantly there is
no indication that that “old” fitted values wg=0.3 [7] and
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FIG. 1. A cubic fit of the simulation results for (T, ...). A
linear fit to the lower four diamonds is also shown. The extrpolated
values 6" at Ty /Tc~0.9 are indicated by stars. Apart from the
data point at 7/T-=0.916 the error is within the symbol. As the
temperature rises from Ty, the value of 6 increases.

wg~0 [6] are appropriate. Such values of the wetting pa-
rameter would imply 7 ~1.15 or #*~1 (corresponding to
MF theory) which are totally inconsistent with the new BLF
data.

Four points that are worth emphasizing are as follows.

(a) The method avoids the issue of whether the transition
is first or second order. Even if the transition is fluctuation
induced first order the wetting temperature Ty, is very close
to T%F and coupling effects may be ignored when 6 is ex-
trapolated to Ty, .

(b) In contrast to the original simulations [6] the FS ef-
fects for the BLF studies are well understood and thus we are
confident that the simulations are probing equilibrium behav-
ior. Problems encountered with the H,=Hp parallel plate
geometry do not arise [9].

(c) The data used to extract the critical amplitude 6 are
taken from the susceptibility measurements of BLF which
are local to the fluctuating interface. Specifically they in-
volve the susceptibilities y, and x,, centered at the middle
of the thin film geometry where the interface lies on average.
Older simulations [6] had relied on measurements of the wall
susceptibilities y; and x;; which require assumption of scal-
ing methods to analyze.

(d) The correlation length £ in the soft mode phase is
very large and easily satisfies the Ginzburg criteria [20].

In summary, we have used a two field Hamiltonian model
to predict a decoupling effect at the three dimensional wet-
ting transition which has implications for the temperature
dependence of critical amplitudes. On the basis of this we
have reanalyzed recent Monte Carlo simulations and ex-
tracted a value of the wetting parameter which is very close
to long-standing theoretical predictions.
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